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Molecular alignment of crystalline polymers leads to 'fibre type' X-ray diffraction patterns which are a 
rich source of structural information. For aligned glassy polymers, however, it is only possible to obtain 
a very diffuse fibre pattern. This paper describes a technique developed to improve the alignment of such 
patterns by azimuthal sharpening. The technique is based on consideration of the contribution to the 
diffraction pattern due to scattering from a fibre entity oriented at an angle to the specimen's extension 
axis. The distribution of these entities about the specimen axis is determined from the azimuthal profile 
of a diffuse diffraction halo which has concentrated on the equator of the pattern. Integral equations are 
developed which describe the appearance of a smeared reflexion on the diffraction pattern in terms of 
the entity distribution. Solution of these equations by an iterative procedure enables the diffraction 
pattern to be azimuthally sharpened. The result is a diffuse version of a typical fibre pattern, which is 
useful in the prediction of chain conformation and packing as well as levels of disorder present. 

1. Introduction 

As part of an investigation of the structure of glassy 
polymers, we have measured wide-angle X-ray dif- 
fraction patterns from specimens aligned by drawing 
at temperatures just below their glass transitions 
(Lovell & Windle, 1976; Colebrooke & Windle, 1976). 
The measurements were made with the symmetric 
transmission arrangement (Fig. 1), the specimen being 
rotated in its own plane (i.e. about the y axis) for each 
value of 20~. The diffracted intensity is plotted as 
contour maps with s = (4re sin 0B/2) measured radially 
and 0 measured azimuthally from the equator (Fig. 
2). Owing to the lack of perfect alignment, the diffuse 
spots that would be expected if the only disorder were 
from paracrystallinity and small crystal size have been 
azimuthally smeared into diffuse arcs. 

In this paper we describe in detail a technique 
developed to remove the component of azimuthal 
smearing from the experimental intensity I(s, ~) to give 
a pattern that may be viewed as a diffuse example of 
the familiar crystalline fibre pattern. 

Examples of the application of this technique to 
aligned glassy polymers have already been presented 
(Lovell & Windle, 1976). 

The paper is organized as follows. We first assume 
a model of an aligned glassy polymer consisting of 
diffracting entities with fibre symmetry. Next we con- 
sider how the diffraction pattern of a single aligned 
entity is altered when the entity is rotated to a general 
orientation. The effect on the equatorial intensity is 
simple and this enables us to measure the distribution 
of entity axes. We make the approximation that the 
distribution can be built up in two stages: spreading 
in the plane that includes the extension direction and 
the y' axis, followed by rotation about the y' axis. 
Azimuthal sharpening is then carried out by reversing 

these two stages to obtain the diffraction pattern of a 
single entity. 

2. Diffraction from a single fibre entity 

The specimens used have fibre symmetry about the 
extension direction (z' axis) and we consider them to 
be composed of identical diffracting entities each with 
its own fibre symmetry. The distribution of the fibre 
axes of these entities about the extension direction, 
~b(~), may be shown on a pole figure (Fig. 3). The 
individual diffracting domains may not have fibre 
symmetry. However, we group together all domains 
that share a common molecular orientation, irrespec- 
tive of their location in the specimen, to create a 
'fibre entity' which does possess fibre symmetry. 

y, y' 

'X 

Fig. 1. Incident and diffracted beams superimposed on a stereo- 
graphic projection of axes defining the experimental geometry 
(xyz) and the specimen axes (x'y'z'). The extension direction is 
z' and the normal to the 'reflexion plane', y, y'. 
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Each fibre entity will contribute to the diffraction 
pattern according to its angular position in relation 
to the extension direction. A change in orientation 
of an entity can change both the intensity and the 
azimuthal position (~) of a 'reflexion' but not its value 
of s. For the present work, the orientation of the axis 
of an entity is specified by polar coordinates referred 
to the y' axis of the specimen, i.e. a rotation of c~a 
about the x' axis followed by a rotation of 0~ 2 about 
the y' axis as shown in the stereographic projection 
of Fig. 4. The effect of these two rotations on a sharp 
reflexion will now be derived. 

'X' 

2.1. Rotat ion oq 
Fig. 5 shows the construction in reciprocal space 

for calculating the position of a reflexion at an angle 
~O' to the equator of the entity. In reciprocal space, 
this reflexion is derived from the intersection of the 

1"0 

0"5 

s (A ') 
Fig. 2. Plot of uncorrected diffracted intensity from an aligned 

specimen of glassy isotactic polystyrene (Lovell & Windle, 1976)• 
The intensity is in arbitrary units and the contours are at equal 
intervals• 

ys 

,X 

Fig. 3. Pole figure illustrating distribution of fibre axes around the 
z' axis. 

S COS~ 

R 52 t Surface element 
near S 

Fig• 4. Steoreographic projection based on specimen axes (x'y'z') 
illustrating the polar coordinate system to define the orientation 
of the fibre entity at S. 

¢' 

B~.~.. ~ - 0  

- 0 Area oc cosec 7 

Intersection of small circle 
CDE and x'z" plane at C. 

Fig. 5. Stereographic projection showing the locus of a reflexion 
(the small circle, centre B) at an angle ~O' to the equator of an 
entity tilted away from the z' axis by cq about x'. 

small circle (CDE) and the 'reflexion plane' (x'z' plane) 
at C. The integrated intensity of the reflexion is pro- 
portional to the area of the intersection (see inset in 
Fig. 5) and hence is proportional to cosec y. If the 
axis of the entity is at an angle cq from the z' axis in 
the y'z' plane, then the reflexion will appear at an 
azimuthal angle ~ (> ~') (Fig. 6a) and its integrated 
intensity J o  will be increased to J 0  cosec 7. 
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From the spherical triangle ABC in Fig. 5 we obtain 

sin ip'=sin ~p cos 0¢1 , (1) 

cos 0q = sin 0' sin ~p + cos ~b' cos Ip sin 7. (2) 

Hence 

sin ~O sin ~' rc -~O' - for c~l < (3) 
COS O~ 1 -- 2 ' 

J o c o s  ~' 
J a  = J o  cosec 7= (cos 2 c~1 - s i n  E ~,)1/2 • (4) 

Since sin ~ cannot be greater than one, all reflexions 
for which $ ' > r c / 2 - a l  will disappear (i.e. the small 
circle will no longer intersect the 'reflexion plane'). 

2.1.1. Special reflexions 
(a) Equatorial (0 '=0).  Rotation a~ merely changes 

the intensity; (3) and (4) become 

~=q/=0 (5) 

~'1 ='¢'0 sec 0q . (6) 

(b) Meridional 0p'=rc/2). Rotation ~i (#0)  makes 
the diffraction spot disappear since (3) gives sin 
greater than one. Hence only an entity with ~1 = 0 can 
contribute its meridional intensity to the diffraction 
pattern. 

2.2. Rotation c~2 
All reflexions are moved around the ring of con- 

stant s on the diffraction pattern by an angle 0~2, with- 
out change of intensity (Fig. 6b). 

3. Diffraction from a distribution of fibre entities 

We now consider a general distribution of entity axes 
• (cq, ~2) which does not necessarily possess fibre sym- 
metry about the extension direction. The probability 
of an entity axis lying between (~1,~2) and (c~x + d ~ ,  
a2 + d~2) is given by: 

(~(¢Xl,(X2) COS ~xidcxldCX 2 (7) 

where 

~ r c [ 2 f n ] 2  COS 
q~(~i,~2) cqdc~ld~2 = 1 

d -~]2 d -~/2 
(see surface element in Fig. 4). 

The projection of this distribution on the y'z' plane, 
D1 (cq), is given by: 

f 
n/2 

Ol(0~l)  = c o s  (X 1 ~(CX 1, cx2)d~x 2 (Ta) 
d - re/2 

Meridian 

f n]2 Di(~i)d~l = 1. 
- n / 2  

The distribution function ~(0q,0c2) has the effect of 
azimuthally smearing the features on a diffraction 

pattern characteristic of a single entity. For a feature 
m a general position, the nature of the smearing will 
be described by a complicated double integral. How- 
ever, in the special case of equatorial and meridional 
features, the integral reduces to a more manageable 
form. 

(a) Equatorial. The azimuthal spread of an equator- 
ial feature is essentially the projection of ~(0~l, 0~2) onto 
the x'z' plane. However, the contribution of the 
equatorial scattering of an entity to the recorded dif- 
fraction pattern depends on sec c~1 (6). Hence: 

f 
nl2 

I~q(0~2)oc ~(0~1,0~2) cos 0~1 sec 0~1d0~1 
,3 - n/2 

f 
rq2 

= ~ ( g l ,  0~2)dgl. (8) 
d -  rr/2 

(b) Meridional. The meridional scattering of a single 
entity can only contribute to the diffraction pattern 
when c~1 =0. Hence: 

Imer(0~2) OC (/)(0, 0~2) • (9) 

This is the section of ~((Xl,0~2) made by the x'z' plane. 

4. Fibre symmetry 

So far we have dealt with a general distribution. In a 
specimen with fibre symmetry, the distribution can 

Equator 

Meridian 

where 

Equator 

Fig. 6. The effect of (a) rotat ion of an entity by ~1 about  x', and 
(b) rotat ion by ~2 about  y', on the azimuthal  position o fa  reflexion 
which is at ~' to the equator  of the entity. 
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only depend on the angle between the entity axis and 
the extension direction (i.e. the angle c~ in Fig. 4). 
Hence we can write 

(~(0~ 1, ~2) ----- 1~) 1 (a) -~- (~2(C0S (~) (lOa) 

where 

2n ~2(COS c0 sin ~dc~ = 1. 

Now, from the spherical triangle R S T  in Fig. 4: 

COS a~-COS (~1 COS (Z 2 

and thus 

• (~l,az)=q~2(cos ~1 cos ~2). (10b) 

In this case, (7a) and (8) become: 

~ rc/2 
D1(~1) =cos  ~x ~2(  cOS ~1 COS ~2)d0~2 (11) 

,,) - n / 2 
and 

f 
n/2 

/eq(O~2)oC (~2(C0S O~ 1 COS o~2)do~ 1 . (12) 
J - h i 2  

However, because ~ 2  is a function of the product 
cos cq cos a2, it is possible to interchange ~a and az 
in equation (12) giving: 

~ 12 
I~q(C~l)OC (/)2(COS 0~ 1 COS ~2)da2 (13) 

J - n/2 
and hence: 

Dl(C~l)OC(COS ~)I~q(~) ,  (14) 

i.e. the projection of the distribution on the y'z' plane 
is proportional to the azimuthal profile of the equator- 
ial halo multiplied by cos ~1. 

Thus, provided we can assume that poor orientation 
is the main cause of azimuthal smearing, a well sepa- 
rated equatorial arc gives a measure of the orientation 
distribution. In determining this, we view the diffrac- 
tion pattern as the sum of two components, one due 
to randomly oriented entities and hence having uni- 
form halos, the other due to the entities that produce 

leq($)__leq(2 ) 1"0 

0"5 
+ 

0 * 

¢ (radians) -~ 

Fig. 7. Plot of the azimuthal profile of an equatorial reflexion for 
glassy isotactic polystyrene (+) compared with the function 
cos 7 ~/. 

the overall texture. For this second component, the 
azimuthal profile of an equatorial halo will have a 
minimum value of zero. 

5. Simplified distribution - two-stage construction 

In order to simplify the sharpening procedure, we now 
make the assumption that the distribution may be 
expressed as a product: 

¢~)2(COS 0~1)¢~2(COS 0~2) (15) 
,/'2(cos ~)= ~2(0) 

This requires, in fact, that the distribution be of the 
form [-with the use of equation (10a)-]" 

(k ÷ 1) cosk ~ (16) • 2(COS a)-- 2n 

where k is positive and, from equation (12), 

I~q(~k)oc cosk~k. (17) 

To test the validity of the assumption of (15), for 
diffraction from aligned glassy polymers, we have 
fitted a function of the form coskff to the azimuthal 
profile of the equatorial halo of glassy isotactic poly- 
styrene. Fig. 7 demonstrates reasonable agreement 
when k = 7. The fit may not of course be at all accept- 
able with different materials, particularly in the case 
of two-component systems where one component is 
much better oriented than the other. 

The reason for requiring the distribution to be ex- 
pressible as a product is that we may then consider 
it to be constructed in two stages: (i) the entity axes 
are first distributed in the y'z' plane (about the x' axis) 
according to Dl(C~l); (ii) they are then distributed 
about the y' axis according to 4~2(cos ~-2), with 
4~2(cos c~2) being independent of C~l. 

For any given value of s, we now define three 
azimuthal intensity profiles representing the stages by 
which the smearing is removed: I1(~) for entities dis- 
tributed as q~2(cos c0, i.e. the full distribution; I2(~) 
for entities distributed as Dl(~X) in the y'z' plane; 1(~) 
for all entities aligned parallel to the z' axis. 

Now, from (3), intensity at ¢ '  to the equator of an 
entity will only appear at ~ (>  ¢') in the diffraction 
pattern if the entity axis is tilted in the y'z' plane at 
an angle al given by 

sin ~' 
(18) COS 0~1--'~ sin ~ " 

Hence, the distribution Dl(al) in the y'z' plane will 
smear intensity at ~' to higher azimuthal angles ac- 
cording to the function" 

2 D l  I 0~1 = C O S - 1  \si-~Jjfsin *"~-] 

c o s  0' 
x d~ x (cos z c~l_sin2 ~9,)1/2. (19) 

The first two terms of this function are the distribu- 
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tion of 0 derived from Dl(0q) by using (18). The third 
term is the geometric intensity factor of (4). 

Substituting cos ~1 from (18) into the intensity factor 
gives 

cos 0' tan 0 
- ( 2 0 )  (cos 2 a l - s i n  2 0') 1/2 tan ~ "  

and differentiating (18) gives: 

dC~l cos 0 sin 0' 
dO - sin 0(sin 2 0 - s i n  2 0') 1/2" (21) 

Hence, expressed in terms of 0 and 0', the function 
(19) becomes 

2Di Icos- 1 {sin ~"]- ] 
) j  
cos 0 sin O' tan 0 

× sin 0(sin z 0 - s i n  2 0') ~/z x tan 0' (22) 

which was derived as function (8) in our earlier paper 
(Lovell & Windle, 1976). 

This simplifies to 

2D1 [cos- 1 (sin ~"~-] cos0'  
\s in $,]_] (sin 2 0 - s i n  2 0') a/2 (23) 

which smears the intensity distribution of an entity 
I(0') according to the integral 

12(O)=2f1 I(O')D' [ c O s - '  ( s in  O ' ~ l , s i n  O/I_] 
cos 0'd0'  

x (sin 2 0_sin2 0,)1/2. (24) 

The intensity profile for the full distribution is then 
derived by convolving I2(0) with the distribution 42 
about the y' axis: 

r 
n/2 

1i(0) =2 I2(0")q~2[ cos (O 0")]d0" U - hi2 

= 2Iz(O)*cPz( cos O). (25) 

6. Azimuthal sharpening 

The sharpening procedure is a reversal of the above 
construction. (i) Solve the convolution equation (25) 
for I2(0) with 

/l(~t) = Ie,p(~t) (26) 

and 

I~q(0) 
f,u2 (27) q~z(COS 0) = 2 I~q(0)d 0 
d - rt]2 

where Io,p(0) is the experimental intensity profile at 
the given value of s, and Ieq(0) is the intensity profile 
for an isolated equatorial arc. 

The new azimuthal profiles I2(0) will build up a 

partially sharpened version of the diffraction pattern, 
in which the component of smearing due to the dis- 
tribution of entity axes around the y' axis has been 
removed. 

(ii) Solve equation (24) for I(0') with 

(COS 0)Ieq(l/t) 

DI(O) = r~/2 (28) 
(cos 0)Ieq(0)d0 

d - ~12 

When (24) has been solved, the equators of the fibre 
entities are aligned with the equator of the diffraction 
pattern and hence 0' (measured from the equator of 
an entity) can be replaced by 0 (measured from equator 
of diffraction pattern). The fully sharpened pattern can 
then by synthesized from the functions 1($). 

Several techniques (Jones & Misell, 1970; Klug & 
Alexander, 1974) are available for the solution of (25) 
and (24). Fourier methods (Stokes, 1948) are applicable 
to (25) since it is a convolution. However, the integral 
(24) requires an iterative or matrix inversion approach. 
In this work an iterative approach (Burger & van 
Citter, 1932; Ergun, 1968) has been used to solve both 
equations as it is less sensitive to errors in the data 
than are inversion or even Fourier methods (Jones & 
Misell, 1970). 

The convolution equation is written 

f (x) = g(x) * h(x) (29) 

where h(x) is the smearing function and 5h(x)dx= 1, 
and deconvolution solves this for g(x). 

The iterative method evaluates successive approxi- 
mations starting from f(x): 

2'0~102 

I"0 ~ ~ i  

0"5- 

0 0"5 11o 1"0 1"5 
s (A-') 

Fig. 8. Fully sharpened intensity pattern for aligned, glassy isotactic 
polystyrene. The crosses mark the positions of the most intense 
reflexions for aligned, crystalline isotactic polystyrene. Adapted 
from Lovell & Windle (1976). 
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go(x)= f (x) 
gl(x) = 2 f ( x ) -  f (x)* h(x) 

g, +1 (x)= g,(x) + [ f ( x ) -  g,(x)* h(x)] . (3o) 

Iteration stops when the correction term, f ( x ) -  
g,(x)*h(x), is of the same order of magnitude as the 
errors in the original data. 

For solving the more general equation (24), the con- 
volution operation in (30) is replaced by the integral 
of (24). 

The fully sharpened version of the data of Fig. 2 
is shown in Fig. 8. The first equatorial halo is not 
plotted as it will of course have zero azimuthal spread. 
There is marked agreement with the crystalline fibre 
pattern. 

7. Conclusions 

The azimuthal sharpening technique described in this 
paper is particularly applicable where a well separated 
equatorial halo is available for determining the dis- 
tribution of entity axes. In principle, a meridional halo 
would be even easier to use since it gives a section of 
the distribution directly. However, meridional reflex- 
ions are much more sensitive to disorder such as 
curved chains or lack of longitudinal register between 
the chains which will smear the reflexion along the 

layer line. This component of smearing would be dif- 
ficult to remove. 

The smearing process of § 5 could, in fact, be carried 
out in a single step for any form of t~(0~1,~2)  , although 
this would involve complicated double integrals. Thus 
the iterative method could be used to reverse the 
process in a single step. However, this requires knowl- 
edge of q~(c~1,~2) rather than its projection. For fibre 
symmetry, we would additionally need to solve (12) 
for 4~2. 

We acknowledge the stimulation of correspondence 
with Professor W. Ruland on this topic and also the 
financial support provided by the Science Research 
Council. 
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Theoretical Approach to the Derivation of Condensed Models of Crystal Structures Based on 
Square-Type Layers 
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Condensed models of crystal structures based on the stacking of equal square-type layers corre- 
sponding to the three possible symmetries (plane groups p4m, p4g and p4) are studied in a general way 
for the regular stacking modes. The minimum set of standard sheets required to represent any structure 
based on each layer symmetry is derived by considering transparent sheets, either square or standard 
rectangular in shape. In the latter case four sheets are necessary for p4m and p4g patterns, and eight 
sheets for p4 patterns. An example of a p4g layer occurring in the CuAI2 and TISe structures is presented. 

Introduction 

The representation of crystal structures, which is a 
three-dimensional problem, can in most cases be 
formally decomposed into a 2D+ 1D (two-plus-one- 
dimensional) problem by considering sections of the 
structure (layers) and the way they stack together. 
Crystal-structure models can therefore be designed by 
slicing the structure into layers of atoms and drawing 
them on transparent sheets which are then mounted 

one above another with a proper spacing. Such models 
are particularly useful for representing inorganic close- 
packed structures and are called 'condensed models' 
(Lima-de-Faria, 1965, 1966). Standard sheets have been 
designed where the packing atoms are represented by 
full circles, and all the possible interstitial sites resulting 
from the stacking of the adjacent close-packed layer 
are drawn as dashed circles. Any layer of a close-packed 
structure is figured out simply by painting in the oc- 
cupied interstitial sites, and in this way a versatile sys- 


